

ORBIT BALL VALVE CATALOG

Content

Overview

Orbit ball valves are widely used in various industries that needs, for example, molecular sieve dehydration, isomerization and hydrocracking.

Antiwear has adopted patented hard metal coating and unique structural designs in orbit ball valves, and this approach substantially eliminates abrasions of ball/seat seals, ball pin, groove pin as well as internal leakage that may occur on either side of the valve. This makes them work well in most severe services, which demands the valves to have no stuck, no leakage on either side under high pressure condition.

Design features

- Zero leakage: no matter pressure in bi-directional, there is absolute zero leakage.
- Long life: to eliminate the friction inflicted on the valve seat and thus fundamentally extend the service life of the valve, in ATW's design the ball only starts to rotate after it leaves the seat.
- No stuck in alternating temperature: There is no stuck because the torque is stable even the operating temperature alters between -60°C and 350°C.
- Self-cleaning sealing surface: when the ball moves away from the seat, the fluid will completely wash any impurities on the sealing surface away, thus the valve would have a long working life.
- Patented coating: The sealing surface coating of the ball/seats is developed and patented by ATW.
- Low fugitive emission packing design: The implementation of real live-load packing design significantly improves the sealing performance, making the external leakage rate much lower than any other designs.
- No dead zone in pocket: single-seat design leaves no dead zone in valve pocket, and effectively reduces the risks of fluid accumulation inside valve pocket.
- Online repair and easy maintenance: top-entry design, which allows online inspection and repair, thus quick and easy maintenance at site for the end users.

Design features

ATW's orbit ball valves are widely used in units such as molecular sieve system, isomerization and hydrocracking. They are most suitable for applications that requires alternating temperature, very low leakage rate, dilating fluid and abrasive fluid, etc.

•Refinery and petrochemical

Orbit ball valve is used at isomerization and hydrocracking unit to be shut-off valve of flammable, explosive, toxic and harmful fluid.

Natural gas industry

Orbit ball valve is used at natural gas extraction, purification and transportation unit in natural gas industry.

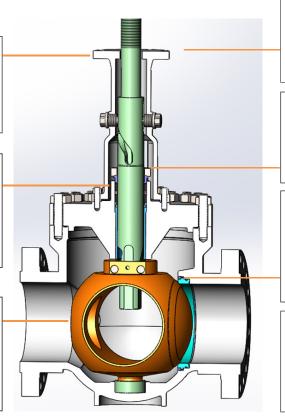
• Ethylene and propylene industry

Orbit ball valve is used at ethylene hydrocracking, propylene oxide, ethylene oxide, polyethylene, polypropylene unit.

•Coal chemical

Orbit ball valve is used at syngas purification and synthesis unit.

ATW Orbit Ball Valve catalog


Design features

One-piece valve body and topentry design:

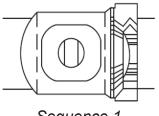
This enables online inspection and repair to reduce maintenance cost.

Oil injection hole design: Whenever the valve packing is stopped against the guide-way groove, lubricating oil can be injected from here to reduce resistance effectively.

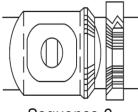
Valve stem wedge surface design: Mechanically wedged seal ensures a reliable bidirectional sealing under full shut-off pressure and a wide temperature range.

Valve stem guiding structure design: This prevents the stem from tilting and avoids external leakage at the graphite packing due to long-time opening/closing.

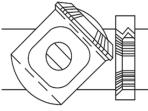
Live-loaded packing design: This provides consistent pretightening force to compensate for fluctuation in temperature and pressure and packing wear.

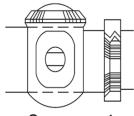

Bi-directional floating seats design: This design keeps the valve zero leakage sealing on bi-directions under wide temperature and preventing valve pocket pressure increasing or even locking the valve.

Bottom shaft supported ball structure design: This design is special in always keeping the ball's center line staying at the center line of the valve seat to ensure the sealing performance.


Core Design Principle: No Relative Friction to assure zero leakage and long life

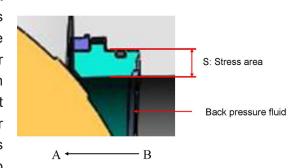
Traditional ball valves have the problem that the sealing surface is always exposed to friction. Normally valve abrasion would occur which will do harm to the sealing surface and reduce the service life. During opening and closing, the valve ball and seats are always in direct contact, or partly in direct contact with each other.


ATW solves this problem in orbit ball valves by implementing unique tilting and rotating designs. This design reduces the relative sliding distance of the seal surface to zero so that there is completely no friction when on/off operating. As the friction does not exist, the metal sealing surface would be able to maintain more healthy to ensure zero leakage rate on bi-directions for a long period of time.



Sequence 2

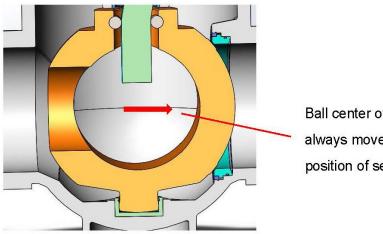
Sequence 3


Sequence 4

Zero leakage on bi-directions sealing under severe working condition

Innovational floating seat design

In order to get zero leakage on bi-directions, Antiwear has made innovation of implementing floating seat design. The seat provides live-loaded auxiliary seal as follows: when the upstream pressure is forced on the sealing surface, the seat enhances the seal; on the other hand, the seat would move in the opposite direction when opposed to downstream pressure to ensure that the sealing pressure on the sealing surface is greater than the permissible sealing pressure. Therefore, this design can allow the valves to meet the requests of zero leakage on bi-directions under many severe working conditions.

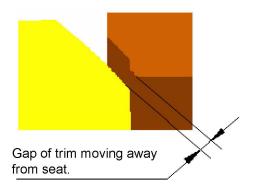


Long life design principle & long time running with no maintenance

Ball & seat matching model

A common issue for traditional orbit ball valves is that the contact between ball and seat could be uneven while the valve is opening or closing. This would then cause the local stress of some part of the sealing surface to be much higher than the permissible stress, and consequently cause the internal leakage exceeding. ATW has carried out the new "Concentric Ball Seat Model" based on results of finite element stimulation and experimental demonstration.

This model can keep the sealing surface of the ball always stay on the centerline of the valve seat. Hence, the ball shows sliding parallel movement on the inclined section during operation in fact. Therefore, the sealing surface would always fit together perfectly during whole operation, so that the valves can work online for longer time with good sealing performance.



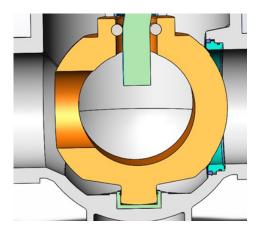
Ball center of sealing surface always moves along central position of seat.

Self-Cleaning sealing pair surface

To take care of fluid accumulation that may damage the sealing surface such as catalyst and molecular sieve, ATW has developed a self-cleaning sealing pair surface by studying physical and mathematical models of valves opening and closing. Under this design, once the ball leaves the seat, any fluid on the sealing surface would be washed away to assure better sealing quality.

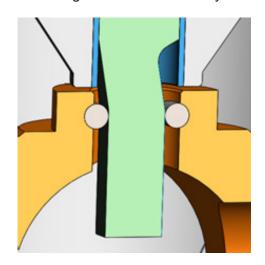
No stuck and ensure valve operability

Patented metal alloy coatings


Throughout the operation of orbit ball valves, different internal metal parts may be brought into contact with each other to cause frictional damage. For instance, such phenomenon occurs between the stem spiral groove and the groove pin as well as between the stem wedge surface and the ball pin. Overtime there could be metal bonding, wear and fragmentation, which would lead to stuck of the valve. Nevertheless, ATW has developed patented metal hard alloy coatings that can avoid above problems effectively.

Chemical Ingredients	Thickness (°C)	Hardness	Chemical Ingredients	Thickness (um)	Coating Process	Basic material
FSLLOY2	<850	84.5~89.5(HRA)	W-C-Co	1	Fully sintered	
FSLLOY4	<680	45~55(HRC)	W-Cr-C-Co	120~220	HVAF, HVOF	Cr13, SS, F51
FSLLOY8	<550	55~59(HRC)	W-Cr-Si-Ni	400~600	HT spraying	SS, F51
FSLLOY10	<550	59~65(HRC)	W-Cr-Si-Ni-C	400~600	HT spraying	SS, F51
FSLLOY12	<550	62~67(HRC)	W-Cr-Si-Ni-C	400~600	HT spraying	SS, F51
FSLLOY14	<450	68~74(HRC)	W-C-Co	120~220	HVAF, HVOF	Cr13, SS, F51
FSLLOY16	<800	65~72(HRC)	Cr-C-Ni	120~220	HVAF, HVOF	Cr13, SS, F51
FSLLOY18	<450	68~72(HRC)	W-Cr-C-Co	120~220	HVAF, HVOF	Cr13, SS, F51
FSLLOY20	<300	82.5~85.5(HRA)	Al-O-Zr		Fully sintered	
FSLLOY48	<680	-	Secret			SS,MONEL,INCONEL

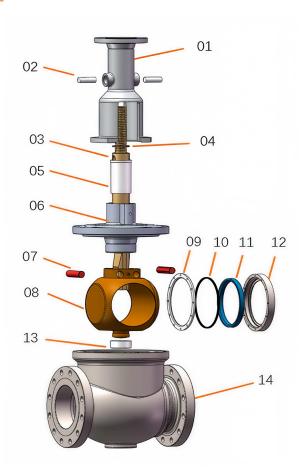
No dead zone in pocket


Antiwear's orbit ball valve has single seat design. The valve pocket is connected directly to the upstream fluid so that any fluid cannot accumulate inside the pocket. This eliminates any possibility of hazard fluid dilating, disintegrating and burning inside the valve.

Other features

Valve stem wedge surface design

The bottom part of the stem consists of an inclined segment, which provides mechanical wedge force for a consistantly tight seal. This mechanical wedge force is independent of the pipeline pressure and temperature. Thus, this design helps to ensure zero leakage on bi-directions under full shut-off pressure and a wide temperature range. Moreover as the sealing pressure may alter due to the ball's wear, the valve stem wedge surface design assure the reliability of sealing.


Live-loaded packing design with no external leakage

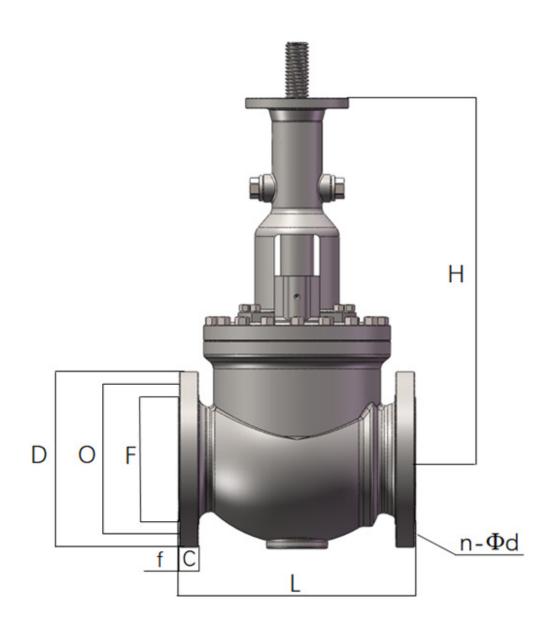
ATW has also done a lot of research on external leakage of valves from self-developed wear models. The result is the live-load packing design. Through controlling the key factors, for instance the packing, the roughness at the valve stem and near the valve stem, the compressed amount of packing, it is assured that the seal stress of packing always remains in safety range so that there cannot be any external leakage.

Materials of parts

Orbit ball valve

Item	Name	Materials
01	Bracket	A216 WCB, A352LCB, A351 CF8/CF3M, A890 4A
02	Groove pin	A705 630 or Inconel718 with hardened
03	Stem	A182 F6a,A705 630,A286 660,Inc.718
04	Thrust bearing	A276 316
05	Upper stem housing	A705 630 with hardened
06	Packing Stuffing Box	A216 WCB, A352LCB, A351 CF8/CF3M, A890 4A
07	Ball pin	A705 630 or Inconel718 with hardened
08	Ball	A216 WCB, A352LCB, A351 CF8/CF3M, A890 4A
09	Seat Retainer	304/316L
10	Seat Ring	Graphite
11	Seat	A105, A182 F304/F316L/F51/F53
12	Filler Block	304/316L
13	Lower Stem Housing	A182 F304/316L,A705 630
14	Body	A216 WCB, A352LCB, A351 CF8/CF3M, A890 4A

Above are normal used materials. Please consult ATW for other materials. ATW reserves the right to modify its design.


Technical Specification

Performance Indicators

Size	• DN 15~DN600 • NPS0.5~NPS24
Flange Standard	• ASME B16.5 • HG/T20592
Pressure Rate	• Class150~Calss2500
Design Temperature	• -196°C~538°C
Structure length standard	• ASME B16.10 • GB/T12221 • API6D
Design Standard	• API 608 • API 6D • ASME B16.34 • GB/T 12237 • GB/T 12224
Inspection and test Std.	• API 598 • ISO5208 • FCI70.2
Low fugitive emission Std.	• TA Luft VDI244 • ISO 15848-1

Outline Dimension

	Si	ze	Dimension (mm)											
Pressure Rate	NPS	DN		L	н	D	o	F	f	С	n od			
rtuto	NFO	DN	RF	RJ	•	U	U		•	,	n-φd			
	1/2	15	108	119	380	90	60.3	35	2	9.6	4-16			
	3/4	20	117	130	400	100	69.9	43	2	11.2	4-16			
	1	25	127	140	420	110	79.4	51	2	12.7	4-16			
	1 1/2	40	165	178	455	125	98.4	73	2	15.9	4-16			
	2	50	178	191	465	150	120.7	92	2	17.5	4-18			
	2 1/2	65	190	203	300	180	139.7	105	2	20.7	4-18			
	3	80	203	216	300	190	152.4	127	2	22.3	4-18			
	4	100	229	242	340	230	190.5	157	2	22.3	8-18			
CLASS150	5	125	356	369	360	255	215.9	186	2	22.3	8-22			
PN20	6	150	394	407	400	280	241.3	216	2	23.9	8-22			
	8	200	457	470	500	345	298.5	270	2	27.0	8-22			
	10	250	533	546	600	405	362.0	324	2	28.6	12-26			
	12	300	610	623	600	485	431.8	381	2	30.2	12-26			
	14	350	686	699	650	535	476.3	413	2	33.4	12-30			
	16	400	762	775	650	595	539.8	467	2	35.0	16-30			
	18	450	864	877	700	635	577.9	533.5	2	38.1	16-33			
	20	500	914	927	700	700	635.0	584	2	41.3	20-33			
	24	600	1067	1080	800	815	749.3	692	2	46.1	20-36			

	Si	ze	Dimension (mm)											
Pressure Rate	NPS	DN		L	н	D	o	F	f	С	n od			
rtato	NFO	DN	RF	RJ	П	D	J)	n-φd			
	1/2	15	140	151	380	95	66.7	35	2	12.7	4-16			
	3/4	20	152	165	400	115	82.6	43	2	14.3	4-18			
	1	25	165	178	420	125	88.9	51	2	15.9	4-20			
	1 1/2	40	190	203	455	155	114.3	73	2	19.1	4-22			
	2	50	216	232	465	165	127.0	92	2	20.7	8-18			
	2 1/2	65	241	257	300	190	149.2	105	2	23.9	8-22			
	3	80	282	298	300	210	168.3	127	2	27.0	8-22			
	4	100	305	321	340	255	200.0	157	2	30.2	8-22			
CLASS300	5	125	381	397	360	280	235.0	186	2	33.4	8-22			
PN50	6	150	403	419	400	320	269.9	216	2	35.0	12-22			
	8	200	502	518	500	380	330.2	270	2	39.7	12-26			
	10	250	568	584	600	445	387.4	324	2	46.1	16-30			
	12	300	648	664	600	520	450.8	381	2	49.3	16-33			
	14	350	762	778	650	585	514.4	413	2	52.4	20-33			
	16	400	838	854	650	650	571.5	467	2	55.6	20-36			
	18	450	914	930	700	710	628.6	533.5	2	58.8	24-36			
	20	500	991	1110	700	775	685.8	584	2	62.0	24-36			
	24	600	1143	1165	800	915	812.8	692	2	68.3	24-42			

ORBIT BALL VALVE

_	Si	ze				Dir	nension (m	ım)			
Pressure Rate	NPS	DN	ı	L	Н	D	0	F	f	С	n (ad
rato	NPS	DN	RF	RJ	П	U	U		•	J	n-φd
	1/2	15	165	163	400	95	66.7	35	7	14.3	4-16
	3/4	20	190	190	420	115	82.6	43	7	15.9	4-18
	1	25	216	216	435	125	88.9	51	7	17.5	4-18
	1 1/2	40	241	241	505	125	98.4	73	2	15.9	4-16
	2	50	292	295	560	165	127	92	7	25.4	8-18
	2 1/2	65	330	333	590	190	149.2	105	7	28.6	8-22
	3	80	356	359	610	210	168.3	127	7	31.8	8-22
	4	100	432	435	690	275	215.9	157	7	38.1	8-26
CLASS600	5	125	508	511	700	330	266.7	186	7	44.5	8-30
PN110	6	150	559	562	705	355	292.1	216	7	47.7	12-30
	8	200	660	663	930	420	349.2	270	7	55.6	12-33
	10	250	787	790	1130	510	431.8	324	7	63.5	16-36
	12	300	838	841	1330	560	489.0	381	7	66.7	20-36
	14	350	889	892	1480	605	527.0	413	7	69.9	20-39
	16	400	991	994	1710	685	603.2	467	7	76.2	20-42
	18	450	1092	1095	1920	745	654.0	533.5	7	82.6	20-45
	20	500	1194	1200	2080	815	723.9	584	7	88.9	24-45
	24	600	1397	1407	2200	940	838.2	692	7	101.6	24-51

	Si	ze	Dimension (mm)											
Pressure Rate	NPS	DN		_	н	D	o	F	f	С	n od			
rtato	NPS	DN	RF	RJ	П	U	U			J	n-φd			
	1/2	15	216	216	400	120	82.6	35	7	22.3	4-22			
	3/4	20	229	229	420	130	88.9	43	7	25.4	4-22			
	1	25	254	254	435	150	101.6	51	7	28.6	4-26			
	1 1/2	40	305	305	505	180	123.8	73	7	31.8	4-30			
	2	50	368	371	560	215	165.1	92	7	38.1	8-26			
	2 1/2	65	419	422	590	245	190.5	105	7	41.3	8-30			
	3	80	381	384	610	240	190.5	127	7	38.1	8-26			
	4	100	457	461	690	290	235.0	157	7	44.5	8-33			
CLASS900	5	125	559	562	700	350	279.4	186	7	50.8	8-36			
PN150	6	150	610	613	705	380	317.5	216	7	55.6	12-33			
	8	200	737	740	930	470	393.7	270	7	63.5	12-39			
	10	250	838	841	1130	545	469.9	324	7	69.9	16-39			
	12	300	965	968	1330	610	533.4	381	7	79.4	20-39			
	14	350	1029	1039	1480	640	558.8	413	7	85.8	20-42			
	16	400	1130	1140	1710	705	616.0	467	7	88.9	20-45			
	18	450	1219	1232	1920	785	685.8	533.5	7	101.6	20-51			
	20	500	1321	1334	2080	855	749.3	584	7	108.0	20-55			
	24	600	1549	1568	2200	1040	901.7	692	7	139.7	20-68			

ORBIT BALL VALVE

	Si	ze				Din	nension (m	nm)			
Pressure Rate	NDC	DN		_	Н			F	f	С	n cod
rtato	NPS	DN	RF	RJ	П	D	0	-	T	U	n-φd
	1/2	15	216	216	400	120	82.6	35	7	22.3	4-22
	3/4	20	229	229	420	130	88.9	43	7	25.4	4-22
	1	25	254	254	435	150	101.6	51	7	28.6	4-26
	1 1/2	40	305	305	505	180	123.8	73	7	31.8	4-30
	2	50	368	371	560	215	165.1	92	7	38.1	8-26
	2 1/2	65	419	422	590	245	190.5	105	7	41.3	8-30
	3	80	470	473	610	265	203.2	127	7	47.7	8-33
	4	100	546	549	690	310	241.3	157	7	54	8-36
CLASS1500	5	125	673	676	700	375	292.1	186	7	73.1	8-42
PN260	6	150	705	711	705	395	317.5	216	7	82.6	12-39
	8	200	832	842	930	485	393.7	270	7	92.1	12-45
	10	250	991	1001	1130	585	482.6	324	7	108	12-51
	12	300	1130	1146	1330	675	571.5	381	7	123.9	16-55
	14	350	1257	1276	1480	750	635.0	413	7	133.4	16-60
	16	400	1384	1406	1710	825	704.8	467	7	146.1	16-68
	18	450	1537	1559	1920	915	774.7	533.5	7	162.0	16-74
	20	500	1664	1686	2080	985	831.8	584	7	177.8	16-80
	24	600	1943	1971	2200	1170	990.6	692	7	203.2	16-94

_	Si	ze	Dimension (mm)											
Pressure Rate	NPS	DN		<u>L</u>	н	D	o	F	f	С	rs and			
rtato	NPS	DN	RF	RJ	П	U	U			U	n-φd			
	1/2	15	264	264	400	135	88.9	35	7	30.2	4-22			
	3/4	20	273	273	420	140	95.2	43	7	31.8	4-22			
	1	25	308	308	435	160	108	51	7	35	4-26			
	11/2	40	384	387	505	205	146	73	7	44.5	4-33			
	2	50	451	454	560	235	171.4	92	7	50.9	8-30			
	2 1/2	65	508	540	590	265	196.8	105	7	57.2	8-33			
CLASS2500 PN420	3	80	578	584	610	305	228.6	127	7	66.7	8-36			
111120	4	100	673	683	690	355	273	157	7	76.2	8-42			
	5	125	794	807	700	420	323.8	186	7	50.9	8-48			
	6	150	914	927	705	485	368.3	216	7	108	8-55			
	8	200	1022	1038	930	550	438.2	270	7	127	12-55			
	10	250	1270	1292	1130	675	539.8	324	7	165.1	12-68			
	12	300	1422	1445	1330	760	619.1	381	7	184.2	12-74			

Remark:

- 1. Structure length complies to ASME B16.10.
- 2. Flange standard complies to ASME B16.5.
- 3. Flange standard and structure length can complies to other standard upon requests.
- 4. All dimensions are for reference only, and ATW reserves the right to make modifications.

Order Instruction

Model compilation

1.MSB-OB: Model code, metal seated orbit ball valve

2. Pressure Rate

Rate	Class150	Class300	Class600	Class900	Class1500
Code	150	300	600	900	1500

3. Size

NPS	1	1.5	2	2.5	3	4	5	6	8	10	12	14	16	18	20	22	24
DN	25	40	50	65	80	100	125	150	200	250	300	350	400	450	500	550	600

4. Connection

		Flange			Wel	ded
RF	RJ	FF	FM/M	TG	BW	sw

5. Options

Reducing bore	Jacketed	Lined	Hardened Path	Extended Stem	None
AN	BN	CN	DN	EN	NN

HELP
YOU
ENJOY
GOOD
LIFE

Antiwear (Suzhou) Industrial Intelligent Technology Co., Ltd.

ADD:No. 18, Yunfan Road, Bixi Sub-district, Changshu City, Suzhou City, Jiangsu Province

TEL:+86-512-82880588

FAX:+86-512-82079059
WEB:www.antiwearvalve.com